Staff Research Highlight - Climate Change Impacts on Mountain Snowpacks
We’re happy to highlight a new publication co-authored by Aquanty’s senior data scientist, Dr. Andre Erler, focused on the expected impacts that climate change will have on snow depth in mountainous regions. This research relies solely on regional climate projections and employs a very similar model configuration (WRF version 4). The WRF simulations used in this paper are described in detail in Erler & Peltier (2017).
Staff Research Highlight - Great Lakes Basin Heat Waves
We’re pleased to highlight new research co-authored by C1W collaborators at Aquanty (Andre Erler) and the University of Toronto (Dr. Richard Peltier). This new paper explores the effects of climate change and greenhouse gases on extreme heat events in the Great Lakes region.
Staff Research Highlight - Future snow changes over the Columbia Mountains, Canada, using a distributed snow model
This paper, co-authored by Andre Erler and researchers from the University of Northern British Columbia, investigates climate change impacts on snow depth using a distributed snow model called SnowModel. Snowmelt is an essential water source for communities, and seasonal snow accumulation in many regions is decreasing with each passing year. Water managers, communities, and policymakers can benefit from improved snow modeling forecasts to inform their decision making and understand vulnerabilities to their water supply systems.
Staff Research Highlight - Evaluating the significance of wetland representation in isotope-enabled distributed hydrologic modeling in mesoscale Precambrian shield watersheds
Aquanty’s very own Arghavan Tafvizi had her PhD research paper “Evaluating the Significance of Wetland Representation in Isotope-Enabled Distributed Hydrologic Modeling in Mesoscale Precambrian Shield Watershed” published in the Journal of Hydrology.
Assigning Spatially Variable PM Properties using “Map property from raster for chosen elements”
If you have ever tried to assign spatially variable material properties in your HGS models using raster files, you will already know that there were several different command specific to individual properties.
Boundary Condition: Reservoir with Spillway
The February 2022 release of HydroGeoSphere (Revision 2356) introduced an advanced boundary condition: the reservoir with spillway. This new feature builds upon the basic reservoir boundary condition, offering enhanced control over water release in your models. With parameters for surcharge reservoir storage, spillway discharge rates, and gate discharge, this boundary condition simulates complex hydraulic operations with greater precision. Unlike the basic reservoir BC, which relies solely on time-value tables, the reservoir with spillway incorporates inflow hydrographs, spillway discharge, and overflow discharge mechanisms, making it an invaluable tool for realistic water management scenarios.
Simple Drain and Makeup Water Boundary Conditions
This post describes how to use two boundary conditions that maintain a target head in the event that head would exceed (simple drain) or undershoot (makeup water) a specified value. Conceptually we can think of these boundary conditions as one-way boundary conditions where water can only enter (makeup water) or exit (simple drain) the system and are active only when the target value is reached. We find these two boundary conditions very useful when trying to represent water management scenarios.